Lega....
Endapan mineral di Finlandia dan Swedia
Perjalanan saya ke lingkaran kutub utara
Atlas of ore minerals: my collection
Basic information of ore mineralogy from different location in Indonesia
Sketch
I always try to draw a sketch during hiking
Apa itu inklusi fluida?
Inklusi fluida adalah istilah yang digunakan untuk menjelaskan adanya fluida yang terperangkap selama kristal tumbuh. Gas dan solid juga bisa terperangkap di dalam mineral.
Situ Cisanti di Pengalengan, Bandung
50 km dari Bandung, Situ Cisanti terkenal karena menjadi sumber mata air sungai Citarum
Sunday, December 19, 2021
Annual Convention MGEI 2021: selesai sudah
Sunday, May 30, 2021
Brunton Axis 5012: review dan perbedaan dengan kompas lain
Saya pernah menggunakan kompas: Silva, Freiberg, Brunton transit (tipe 5006, 5008, 5010), dan sekarang saya coba memakai Brunton axis (tipe 5012). Keperluan saya, sebagai seorang eksplorer adalah penentuan kedudukan, azimuth, pengukuran sudut (klinometer, kemudian menentukan ketinggian dari suatu obyek), menentukan arah dan kemenerusan urat (misal pada urat kuarsa yang membawa emas).
Untuk yang awam tentang penggunaan kompas geologi, tulisan saya yang ini mungkin dapat membantu membayangkan apa yang kami lakukan dengan kompas.
Kesulitan kompas Silva (bagi saya) adalah perlunya pemutaran pembacaaan derajat untuk pengukuran jurus dan dip. Saat ini banyak yang menggunakan kompas Silva, terutama di belahan dunia bagian Utara karena bahan kompas ini berbahan dasar akrilik dan tidak berbahan dasar logam. Karena ringan, biasanya kompas ini menjadi pilihan untuk mendaki gunung. Karena berbahan akrilik, sehingga tidak dingin saat dipegang di musim dingin, terutama ketika ski.
Kompas Freiberg
(sumber: https://commons.wikimedia.org/wiki/File:FPM_compass_with_annotation_en.svg)
Kompas Brunton tipe 5006 dan 5008 mempunyai bagian yang sedikit menonjol di bagian bawah sisi kompas, sehingga pengukuran strike agak sulit pada kemiringan (dip) yang landai. Permasalahan ini bisa dengan mudah terselesaikan pada kompas Freiberg dan Brunton 5010 (kompas Brunton yang memiliki hinge inclinometer (bentuk membundar di bagian belakang kompas yang digunakan untuk pengukuran sudut). Sampai akhirnya, tipe baru Brunton keluar di pasaran, yaitu Brunton 5012 dengan fitur yang menurut saya optimal, terutama untuk keperluan eksplorer atau geologis di lapangan.
Brunton transit 5006. Foto almh Neli Iklima, sewaktu saya mengukur perlapisan di serpentinit di Pulau Obi. Perhatikan arah Utara yang sejajar dengan arah azimuth kompas ini. Bandingkan dengan foto berikutnya, dimana penunjuk arah Utara berubah di Brunton Axis 5012.
Pengukuran strike dan dip pada lapisan dengan kemiringan yang rendah
Brunton 5012 ini sesuai dengan kebutuhan saya, dan perhitungan struktur dapat dilakukan dengan cepat. Pada tipe Brunton lama (5006, 5008, 5010), untuk mengukur strike kita perlu membuat garis pemandu dengan menggesekkan kompas atau menggores dengan pena/ pensil pada kertas yang ditempelkan pada clipboard. Hal ini memerlukan waktu dan ketelitian tinggi. Hal ini kemudian dimodifikasi pada tipe Brunton 5012, yang menurut saya menyerupai fitur dari kompas Freiberg.
Pengukuran pada struktur yang menggantung sangat menarik, karena hal ini tidak bisa dilakukan di tipe kompas geologi lain. Pada tipe lain, kita harus berhati-hati, karena kemungkinan menentukan arah strike dan dip dapat keliru. Dengan Brunton Axis, kita bisa menggunakan punggung kompas dan membentuk sudut lancip: strike dan dip langsung dapat diukur.
Pengukuran struktur pada bidang yang menggantung. Ilustrasi dari tanah liat dan blok kayu ini saya buat untuk menggambarkan lipatan, dimana dip dari perlapisan akan berubah secara bergradasi dari landai hingga terjal
Eyesight di Brunton 5012 dan menggantikan fitur lubang azimuth (yang menyerupai segitiga) yang biasa ada kompas geologi. Fitur ini digunakan untuk menentukan azimuth (bearing direction) dan klinometer. Masalah harga, kompas ini lebih mahal dibanding Brunton tipe biasa, namun masih di bawah kompas Freiberg. Saya sendiri puas dengan Brunton 5012 ini. Semoga bisa bertahan sampai saya pensiun.
Ini ada beberapa video yang saya buat. Enjoy!
1) Mengukur azimuth dan sudut lereng
2) Mengukur sudut lereng dengan kompas geologi
Friday, May 7, 2021
Lebih baik terlambat daripada belum memulai
Wednesday, November 18, 2020
Lithium: biar sedikit tapi dicari-cari
Lepidolit, mineral mika yang kaya akan litium. Kadang berwarna pink, kadang keunguan. Foto penulis.
Lithium adalah logam alkali pertama yang terletak di tabel periodik di golongan I. Lithium merupakan salah satu logam primadona dalam beberapa decade terakhir. Mengapa harus lithium? Bukan hanya lithium sebagai logam kritis yang diperlukan oleh masyarakat modern, lithium juga dapat menjawab pertanyaan untuk peneliti saat ini.
Lithium dijumpai pada baterai peralatan elektronik dan moda transportasi masyarakat modern kendaraan listrik atau hybrid. Lihat tulisan Li-ion, yang menunjukkan hampir semua elektronik membutuhkan lithium. Foto penulis.
Lithium ditemukan dua ratus tahun yang lalu, mempunyai nomor atom 3, mempunyai keterdapatan yang sangat rendah di kerak bumi mencapai 21 µg/g. Nama lithium berasal dari Bahasa Latin dari batuan “lithos” karena awalnya unsur ini diisolasi dari mineral, berbeda dengan alkali lain seperti sodium (Na) dan potassium (K) yang didapatkan reaksi elektrolisis [1]. Lithium adalah logam penting yang digunakan dalam kehidupan modern kita sehari-hari. Saat anda membaca tulisan ini, sangat besar kemungkinan bahwa pembaca akan menggunakan peralatan elektronik (laptop, tablet, smart phone) yang dilengkapi dengan baterai lithium-ion. Ketika kita mengendarai kendaraan elektronik atau kendaraan hybrid (walaupun belum banyak di Indonesia), kendaraan tersebut juga dilengkapi dengan baterai yang mengandung lithium. Dalam ilmu Kesehatan, lithium dimanfaatkan dalam pengobatan bi-polar disorder.
Lithium tidak dijumpai secara natural di alam, umumnya terdapat bersama-sama mineral lain. Terdapat sekitar 124 mineral yang membawa unsur lithium (120 sudah disetujui oleh IMA, International Mineralogical Association, 4 merupakan potensial spesies mineral), yang tersebar pada beberapa lingkungan pembentukan: (1) lithium-caesium-tantalum pada endapan pegmatit granit dan batuan yang mengalami metasomatisme, (2) batuan pegmatit peralkalin, (3) batuan metasomatic yang tidak berhubungan dengan pegmatit, (4) endapan mangan, (5) brines pada salar atau fluida geothermal. Mineral utama yang membawa endapan lithium adalah spodumen (LiAlSi2O6), petalite (LiAlSi4O10), lepidolite dan zinnwaldite. Pegmatit adalah sebutan untuk batuan yang mempunyai ukuran kristal yang sangat besar dibanding kristal pada umumnya. Lihat saja mineral spodumen di bawah ini, dengan manusia sebagai komparator.
Kristal spodumen yang berbentuk meniang pada Etta Mines, Black Hills, Pennington County, South Dakota. Sudah lihat, ada manusia disana? Sumber: USGS dan https://geology.com/minerals/spodumene.shtml
Mineral lepidolite, yang merupakan salah satu mineral pembawa lithium yang termasuk grup mika. Mineral dan foto penulis.
Saat ini produksi lithium dunia dari batuan utamanya berasal dari Australia (endapan Greenbushes, Wodgina), Brazil (Minas Gerais), Kanada (Tanco, Whabouci), dan Zimbabwe (Arcadia). Salar, yang merupakan sebutan dari dataran luas yang kering dan tersusun oleh endapan garam, mengandung sekitar 70% dari sumberdaya lithium dunia berada di endapan brines yang berada di Amerika Selatan (Bolivia, Chile, Argentina). Beberapa lokasi penting yang menghasilkan brine antara lain Salar de Atacama (Chile), Salar de Uyuni (Bolivia), Zhabuye (Tibet), dan Centenario (Argentina). Penghasil Li-brine juga didapat dari daerah Amerika Serikat bagian barat laut, Cina, dan Israel.
Warna biru tosca kehijauan ini adalah brine dari Salar de Atacama, tempat memproduksi lithium (https://www.theatlantic.com/photo/2015/07/viewing-earth-from-above/398999/ )
Di Indonesia, keberadaan lithium merupakan hal yang menarik untuk ditindak lanjuti, salah satunya brine yang berhubungan dengan fluida panas bumi, serta pada beberapa granit dengan tipe-S (sedimentary granite), batuan peraluminous (Al2O3 lebih tinggi dari Na2O+K2O+CaO), pegmatit yang berasosiasi dengan orogenesa kolisional merupakan lokasi ideal untuk mencari potensi litium di Indonesia.
Bandung, 18 Nov 2020
Penulis: Andy Yahya Al Hakim, KK Eksplorasi Sumber Daya Bumi - FTTM ITB
Sumber:
1. Lithium: Less is More. 2020. Elements. Agustus 2020 Vol. 16 No. 4.
2. https://www.cornishlithium.com/cornish-lithium-secures-rights-to-explore-for-lithium-in-cornwall/ akses 2 November 2020
3. World Mining Data 20204. Mineralogic Notes, Series 3: Waldemar Schaller, Gigantic Crystals of Spodumene, United States Geological Survey, Bulletin 610, 1916.
5. https://www.theatlantic.com/photo/2015/07/viewing-earth-from-above/398999/ akses 18 Nov 2020
Tuesday, September 1, 2020
Garam laut, garam gunung, dan bersepeda di Salar de Uyuni-Bolivia
Monday, August 17, 2020
Situ Cisanti: dulu dan kini
8 tahun lalu, bulan Desember 2012 ada 2 acara bersepeda bersamaan, yang sebenarnya dua-duanya saya pengen banget ikut: Ulin Bareng Bikepacker Indonesia ke Situ Cisanti dan Gowes Bareng Geolog di Gunung Patuha-Situ Patenggang. Dua-duanya berlangsung di hari yang sama, Ulin Bareng 2 hari, sedangkan Gowes Bareng Geolog cuma 1 hari.
Saya akhirnya memutuskan untuk ikut acara kedua, karena penasaran dengan kuliah alam alm. P Budi Brahmantyo (Dosen Geologi ITB). Dalam hati kecil, saya juga penasaran dengan Situ Cisanti, karena saya sudah dengar keindahan alam disana. Keduanya sama-sama berlokasi di selatan Bandung. Gunung Patuha dan Situ Patenggang melewati Ciwidey yang kaya akan strawberry, sedangkan Situ Cisanti perjalanannya melalui Ciparay, lumbung padi.
Beberapa hari berselang, saya cuma bisa senyum-senyum sendiri melihat teman-teman yang kemping di Situ Cisanti. Woooow.... Bagus bener pemandangan disana, itu yang terpikir waktu saya lihat foto-foto mereka.
April tahun 2014, 1 hari menjelang pemilu Presiden, akhirnya saya baru kesampaian juga bersepeda ke Cisanti bersama 1 orang teman. Teman-teman saya menyusul dengan naik mobil, waktu itu saya iming-imingi, disana bisa mancing. Saya berangkat sore hari jam 4 dari Dago, baru sampai sekitar jam 2 dini hari, selain bersepedanya santai, saya juga sempat diinterogasi di Polsek Kertasari gara2 bersepeda dengan jaket yang identik dengan warna salah satu parpol, di malam menjelang pemilu.
"Kamu ngapain sepeda malam-malam ke Cisanti? Ga ikutan pemilu? Jangan-jangan mau ada serangan fajar ya?" Pengalaman bersepeda yang ga pernah saya lupakan sampai sekarang. Niat hati cari senang, malah kartu izin mengemudi saya nginap di kantor polisi.
Lewat dari Kantor Polisi, kami sampai subuh menunggu di parkiran Situ Cisanti. Setelah masuk, saya baru membuktikan sendiri keindahan Cisanti. Danau ini benar-benar indah. Indah. Danau yang berada di kaki Gunung Wayang dan Gunung Windu, sangat asri. Tidak jauh dari danau ini, terdapat pembangkit listrik tenaga panas bumi terbesar di Indonesia yang berlokasi di Wayang Windu.
2014 dulu, saya masih ingat lokasi ini masih sangat natural. Jalan masih setapak, sudah ada saluran air dan saya masih ingat sekali, petilasan Dipati Ukur, dimana mata air keluar, berwarna sangat-sangat jernih. Warna biru kehijauan yang sama dengan air gletser yang berasal lelehan salju, yang pernah saya lihat di Gruener See (artinya danau hijau), Austria.
Kemarin, 1 hari menjelang 17 Agustus 2020, saya bisa kembali lagi ke danau ini, kali ini bersama keluarga dan seorang teman. Saya ingin sekali membagi apa yang pernah saya lihat dulu ke keluarga saya. Tahun 2020, saya melihat lokasi ini menjadi jauh lebih tertata dan sudah di-paving sebagian. Sangat berbeda dengan tahun 2014, jalanan yang mengelilingi danau masih tanah. Sayangnya, lebar bagian yang di paving berukuran sangat sempit. Ketika harus berpapasan dengan orang lain, salah satu harus mengalah untuk turun ke tanah, atau merapat ke sisi kiri yang sudah dibatasi dengan pagar bambu berwarna-warni dan ditanami alang-alang.
Di tahun 2014 dulu, belum ada pembatas jalanan dengan danau. Beberapa pemancing bisa menghabiskan waktu di tepian danau, menunggu ikan dengan berjongkok, duduk atau berdiri persis di tepian. Beberapa orang justru memancing di atas rakit, ada juga yang melempar jala di tengah danau.Tahun 2020 ini, berbeda drastis. Sudah ada pagar bambu yang membatasi jalan dengan danau. Tidak ada lagi pemancing, sepertinya sudah dilarang sejak program Citarum Harum yang dilaksanakan beberapa tahun lalu. Banyak plang yang menunjukkan lokasi-lokasi 7 mata air di Cisanti. Hal yang tidak saya jumpai beberapa tahun lalu.
Saya di tahun 2014, dan teman-teman saya Bikepacker Indonesia di tahun 2012, masih bisa membawa sepeda ke tepian danau dan membuka tenda untuk menginap. Di tahun 2020 ini terpampang jelas: sepeda tidak boleh dibawa ke bawah (maksudnya danau). Saya tidak lihat adanya tenda. Yang jelas, sekarang lebih banyak wisatawan, banyak yang membawa tikar dan menggantungkan hammock untuk berayun. Situasinya sangat bersih, tersedia tempat sampah dan tulisan-tulisan yang mempromosikan kebersihan.
Walaupun Situ Cisanti sudah tidak seperti dahulu, saya masih mengagumi kebersihannya. Banyak keluarga, pesepeda yang berkunjung. Penjaja makanan ada di sisi luar, diteduhi pohon Eucalyptus berwarna hijau yang rindang. Terima kasih buat semua yang sudah menjaga Cisanti, semoga danau ini terus asri. Let nature sing, let nature forever humble you.
Saya jadi ingat waktu saya baca tulisan Martinus Brouwer, seorang budayawan dari Delft yang ditolak status warga negara Indonesia berkata seperti ini: Bumi Pasundan lahir saat Tuhan sedang tersenyum. Apa kita sudah bersyukur lahir di tanah yang indah ini?
Terima kasih, Ibu Sud. Dirgahayu Indonesia.
Tulisan Situ Cisanti tahun 2014 (Asrinya Situ Cisanti)
Monday, April 20, 2020
Mineralogi - Inklusi Fluida: Dasar, Metode, Aplikasi dan Interpretasi [Minggu 5]
- Inklusi fluida: dasar, metode, aplikasi dan interpretasi
- mahasiswa mengerti pengertian inklusi fluida, dasar, aplikasi
- mengerti perbedaan inklusi primer, pseudosekunder, sekunder
- metode berbagai metode analisa inklusi fluida
- petrografi, SEM, CL
- mikrotermometri
- Raman spektroskopi
- spektroskopi massa (ICPMS dan LA-ICPMS)
Thursday, April 9, 2020
Kuliah Mineragrafi - TA4213 Teknik Pertambangan ITB
- Prinsip mikroskop optik dan preparasi sampel batuan untuk analisa mikroskopi
- Identifikasi mineral dengan menggunakan mikroskop optik refleksi
- Analisa mineral butir dengan mikroskop dan aplikasi untuk geometalurgi
- Mikroskop elektron dan automated mineralogy
- Inklusi fluida: dasar, metode, interpetasi dan aplikasi
§ NB: Semua gambar/ garis yang ada di slide perkuliahan telah saya gambar ulang untuk keperluan perkuliahan atau berasal dari koleksi foto/ sampel pribadi kecuali diindikasikan dengan sitasi
Mineralogi - Mikroskop elektron dan analisa mineralogi kuantitatif [Minggu 4]
- Prinsip mikroskop elektron dan analisa kuantitatif